Surface approximation via sparse representation and parameterization optimization
نویسندگان
چکیده
Surface approximation with smooth functions suffers the problems of choosing the basis functions and representing non-smooth features. In this work, we introduce a sparse representation for surfaces with a set of redundant basis functions, which efficiently overcomes the overfitting artifacts. Moreover, we propose an approach of parameterization transformation, which makes the possibility to represent nonsmooth features by the composition of a smooth function and a non-smooth domain optimization. We couple the sparse representation and the parameterization transformation in a global optimization to respect sharp features with smooth polynomial basis functions. Our approach is capable for approximating a wide range of surfaces with different level of sharp features. Experimental results have shown the feasibility and applicability of our proposed method in various applications. © 2016 Elsevier Ltd. All rights reserved.
منابع مشابه
Image Classification via Sparse Representation and Subspace Alignment
Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...
متن کاملDeblocking Joint Photographic Experts Group Compressed Images via Self-learning Sparse Representation
JPEG is one of the most widely used image compression method, but it causes annoying blocking artifacts at low bit-rates. Sparse representation is an efficient technique which can solve many inverse problems in image processing applications such as denoising and deblocking. In this paper, a post-processing method is proposed for reducing JPEG blocking effects via sparse representation. In this ...
متن کاملA Novel Image Denoising Method Based on Incoherent Dictionary Learning and Domain Adaptation Technique
In this paper, a new method for image denoising based on incoherent dictionary learning and domain transfer technique is proposed. The idea of using sparse representation concept is one of the most interesting areas for researchers. The goal of sparse coding is to approximately model the input data as a weighted linear combination of a small number of basis vectors. Two characteristics should b...
متن کاملHyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations
The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...
متن کاملRobust Face Recognition via Sparse Representation
In this project, we implement a robust face recognition system via sparse representation and convex optimization. We treat each test sample as sparse linear combination of training samples, and get the sparse solution via L1-minimization. We also explore the group sparseness (L2-norm) as well as normal L1-norm regularization.We discuss the role of feature extraction and classification robustnes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computer-Aided Design
دوره 78 شماره
صفحات -
تاریخ انتشار 2016